Mathematics (SNC) – Class 9th
Q1. Choose the correct option.
- 3a3b−9ab2+15ab factored is:
(A) 3ab(a2−3b+5)
- Factorization of x2+x−12:
(B) (x−3)(x+4)
- (x+9)(x+4) is the factorized form of:
(C) x2+13x+36
- Factorization of x4+4x2+16:
(C) (x2−2x+4)(x2+2x+4)
- (x+1)(x+2)(x+3)(x+4)+1=
(B) (x2+5x+5)2
- Factorization of 125a3−1:
(C) (5a−1)(25a2+5a+1)
- HCF of a3+2a2−3a and 2a2+5a−3:
(A) a−1
- Product of LCM and HCF equals:
(C) Product
- To find HCF for x2+x and x3+x2 with LCM x2(x+1), we use:
(B) x2(x+1)(x2+x)(x3+x2)
- Factorization of 12x+36:
(A) 12(x+3)
Q2. Short Answers
[i] (x+1)(x+3)
[ii] (x−3)(x+4)
[iii] (x−8)(x+7)
[iv] (2y−1)(y−2)
[v] (x−3)(x2+3x+9)
[vi] LCM: 8x2(x+3), HCF: 4x
[vii] LCM: x(x−3)(x+2), HCF: x−3
[viii] Algebraic factorization: Expressing an expression as a product of factors. Example: x2−4=(x−2)(x+2)
[ix] (x−3)(x−8)
[x] (2x+5)(x+3)
[xi] (x2−3y2)2
[xii] (2x−5y)(4x2+10xy+25y2)
[xiii] LCM: 8x2y2
[xiv] HCF: a(a−1)
[xv] Other polynomial: y2−5y−14
Q3. Detailed Answers (Answer any 2)
1. Factorize: a4+64b4a4+64b4
a4+64b4=(a2)2+(8b2)2
Add and subtract 16a2b2:=a4+16a2b2+64b4−16a2b2=(a2+8b2)2−(4ab)2
Using difference of squares:=(a2+8b2−4ab)(a2+8b2+4ab)
✅ Factors: (a2−4ab+8b2)(a2+4ab+8b2)
2. Factorize: (x+1)(x−1)(x+2)(x−2)−16×2(x+1)(x−1)(x+2)(x−2)−16x2
Group:[(x+1)(x−1)][(x+2)(x−2)]−16x2(x2−1)(x2−4)−16x2
Let y=x2:(y−1)(y−4)−16y=y2−5y+4−16y=y2−21y+4
Factor:=(y−221+425)(y−221−425)
Substitute back y=x2:
✅ Factors: (x2−221+517)(x2−221−517)
3. Find product of two polynomials
Given:
HCF = x+a
LCM = 12x2(x+a)(x−a2)
We know:Product of polynomials=HCF×LCM=(x+a)×12x2(x+a)(x−a2)=12x2(x+a)2(x−a2)
✅ Product: 12x2(x+a)2(x−a2)
Designed by @2025 everexams.com
All rights reserved.