Mathematics (SNC) – Class 9th

Q1. Choose the correct option.

  1. 3a3b9ab2+15ab3a3b−9ab2+15ab factored is:
    (A) 3ab(a23b+5)3ab(a2−3b+5)
  2. Factorization of x2+x12x2+x−12:
    (B) (x3)(x+4)(x−3)(x+4)
  3. (x+9)(x+4)(x+9)(x+4) is the factorized form of:
    (C) x2+13x+36x2+13x+36
  4. Factorization of x4+4x2+16x4+4x2+16:
    (C) (x22x+4)(x2+2x+4)(x2−2x+4)(x2+2x+4)
  5. (x+1)(x+2)(x+3)(x+4)+1=(x+1)(x+2)(x+3)(x+4)+1=
    (B) (x2+5x+5)2(x2+5x+5)2
  6. Factorization of 125a31125a3−1:
    (C) (5a1)(25a2+5a+1)(5a−1)(25a2+5a+1)
  7. HCF of a3+2a23aa3+2a2−3a and 2a2+5a32a2+5a−3:
    (A) a1a−1
  8. Product of LCM and HCF equals:
    (C) Product
  9. To find HCF for x2+xx2+x and x3+x2x3+x2 with LCM x2(x+1)x2(x+1), we use:
    (B) (x2+x)(x3+x2)x2(x+1)x2(x+1)(x2+x)(x3+x2)​
  10. Factorization of 12x+3612x+36:
    (A) 12(x+3)12(x+3)

Q2. Short Answers

[i] (x+1)(x+3)(x+1)(x+3)
[ii] (x3)(x+4)(x−3)(x+4)
[iii] (x8)(x+7)(x−8)(x+7)
[iv] (2y1)(y2)(2y−1)(y−2)
[v] (x3)(x2+3x+9)(x−3)(x2+3x+9)
[vi] LCM: 8x2(x+3)8x2(x+3), HCF: 4x4x
[vii] LCM: x(x3)(x+2)x(x−3)(x+2), HCF: x3x−3
[viii] Algebraic factorization: Expressing an expression as a product of factors. Example: x24=(x2)(x+2)x2−4=(x−2)(x+2)
[ix] (x3)(x8)(x−3)(x−8)
[x] (2x+5)(x+3)(2x+5)(x+3)
[xi] (x23y2)2(x2−3y2)2
[xii] (2x5y)(4x2+10xy+25y2)(2x−5y)(4x2+10xy+25y2)
[xiii] LCM: 8x2y28x2y2
[xiv] HCF: a(a1)a(a−1)
[xv] Other polynomial: y25y14y2−5y−14


Q3. Detailed Answers (Answer any 2)

1. Factorize: a4+64b4a4+64b4

a4+64b4=(a2)2+(8b2)2a4+64b4=(a2)2+(8b2)2

Add and subtract 16a2b216a2b2:=a4+16a2b2+64b416a2b2=a4+16a2b2+64b4−16a2b2=(a2+8b2)2(4ab)2=(a2+8b2)2−(4ab)2

Using difference of squares:=(a2+8b24ab)(a2+8b2+4ab)=(a2+8b2−4ab)(a2+8b2+4ab)

✅ Factors: (a24ab+8b2)(a2+4ab+8b2)(a2−4ab+8b2)(a2+4ab+8b2)


2. Factorize: (x+1)(x−1)(x+2)(x−2)−16×2(x+1)(x−1)(x+2)(x−2)−16x2

Group:[(x+1)(x1)][(x+2)(x2)]16x2[(x+1)(x−1)][(x+2)(x−2)]−16x2(x21)(x24)16x2(x2−1)(x2−4)−16x2

Let y=x2y=x2:(y1)(y4)16y=y25y+416y(y−1)(y−4)−16y=y2−5y+4−16y=y221y+4=y2−21y+4

Factor:=(y21+4252)(y214252)=(y−221+425​​)(y−221−425​​)

Substitute back y=x2y=x2:
✅ Factors: (x221+5172)(x2215172)(x2−221+517​​)(x2−221−517​​)


3. Find product of two polynomials

Given:
HCF = x+ax+a
LCM = 12x2(x+a)(xa2)12x2(x+a)(xa2)

We know:Product of polynomials=HCF×LCMProduct of polynomials=HCF×LCM=(x+a)×12x2(x+a)(xa2)=(x+a)×12x2(x+a)(xa2)=12x2(x+a)2(xa2)=12x2(x+a)2(xa2)

✅ Product: 12x2(x+a)2(xa2)12x2(x+a)2(xa2)


Designed by @2025 everexams.com
All rights reserved.