Arithmetic Progression (AP):
nth term: a_n = a_1 + (n-1)d
Sum: S_n = \frac{n}{2}[2a_1 + (n-1)d]
Geometric Progression (GP):
nth term: a_n = a_1 r^{n-1}
Sum: S_n = \frac{a_1(1-r^n)}{1-r}, r \neq 1
Harmonic Progression (HP):
Reciprocal of AP
If a, b, c are in HP, then \frac{1}{a}, \frac{1}{b}, \frac{1}{c} are in AP
Arithmetic Mean (AM):
For a, b: AM = \frac{a+b}{2}
For n numbers: AM = \frac{\sum x_i}{n}
Geometric Mean (GM):
For a, b: GM = \sqrt{ab}
For n numbers: GM = \sqrt[n]{x_1 \cdot x_2 \cdots x_n}
Special Sums:
\sum_{k=1}^{n} k = \frac{n(n+1)}{2}
\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}
Note: Answer any 2 questions. Each question carries 5 marks.