Outer transition elements · extended d-block master · everExams
⚛️ outer transition · d-block extended | everExams
@everexams.com

🧪 outer transition elements (d-block) · extended master notes

📘 1. introduction & four series

Definition: Elements with partially occupied d-orbitals in atomic or ionic state → outer transition / d-block elements. Positioned between s and p blocks. Key because of versatile oxidation states, catalytic activity, alloy formation, colour, complex formation, magnetic behaviour, electrical conductivity.

Four series:

🔬 General features: metallic lustre, hard, high density, malleable, ductile, high melting/boiling points. Atomic radii intermediate.
⚛️ 2. electronic config exceptions (Cr, Cu)

Chromium (Z=24): expected [Ar] 4s² 3d⁴ but actual [Ar] 4s¹ 3d⁵ (half‑filled d⁵ stability).

Copper (Z=29): expected [Ar] 4s² 3d⁹ but actual [Ar] 4s¹ 3d¹⁰ (completely filled d¹⁰).

half‑filled / fully filled d subshell extra stability → electron from 4s promoted.
⚡ 3. binding energy trend

Definition: Energy required to separate constituents of a bound system. In d‑block, binding energy is higher due to strong attraction of outermost d electrons. Across a period: increases due to increasing nuclear charge and decreasing atomic radius. Down a group: decreases because atomic size and shielding reduce effective nuclear charge.

📊 In 3d series, zinc has the least binding energy (3d¹⁰ fully filled, stable, electrons less tightly held).
Across: Zeff ↑ → binding ↑ ; Down: shielding ↑ → binding ↓.
🔁 4. variable oxidation states

Range from +1 to +7. Due to very small energy difference between (n‑1)d and ns orbitals → both electrons participate. Common oxidation state +2; highest +7 (Mn). Increase from Sc to Mn, then decrease to Zn.

Examples: Sc (+3), Ti (+3,+4), V (+2 to +5), Cr (+2,+3,+6), Mn (+2,+4,+6,+7), Fe (+2,+3), Co (+2,+3), Ni (+2), Cu (+1,+2), Zn (+2).

📌 Manganese shows +7 in KMnO₄; chromium shows +6 in K₂Cr₂O₇.
🧪 5. IUPAC nomenclature (full rules)

Examples from document:

[Cu(NH₃)₄]SO₄ → tetraaminecopper(II) sulphate

[Cr(H₂O)₄Cl₂]NO₃ → tetraaquodichlorochromium(III) nitrate

K₄[Fe(CN)₆] → potassium hexacyanoferrate(II)

[Pt(NH₂‑CH₂‑CH₂‑NH₂)₃]Cl₄ → tris(ethylenediamine)platinum(IV) chloride

[Co(NH₃)₃(NO₂)₃] → triaminetrinitrocobalt(III)

[Zn(OH)₄]²⁻ → tetrahydroxozincate(II) ion

[Cu(en)₂]²⁺ → bis(ethylenediamine)copper(II) ion

✏️ Self‑assessment answers: [Pt(H₂O)Cl](NO₃)₃ = aquachloroplatinum(IV) nitrate ; K₂[Cu(CN)₄] = potassium tetracyanocuprate(II) ; [Cr(NH₃)₄]³⁺ = tetraaminechromium(III) ion ; [AlF₆]³⁻ = hexafluoroaluminate(III) ion.
🧴 6. chromium – element & potassium dichromate

Chromium: silvery grey, 3d⁵4s¹. Oxidation states +2,+3,+4,+5,+6. Lower states = reducing agent; higher = oxidising agent.

Reactions:
2Cr(s) + 6HCl(aq) → 2CrCl₃(aq) + 3H₂(g)
4Cr(s) + 3O₂(g) → 2Cr₂O₃(s) (heat)
2Cr(s) + 3H₂O(g) → Cr₂O₃(s) + 3H₂(g) (steam, high temp)

Potassium dichromate (K₂Cr₂O₇): orange‑red solid, water soluble. pH sensitive equilibrium:

Cr₂O₇²⁻(orange) + H₂O ⇌ 2CrO₄²⁻(yellow) + 2H⁺

Acid → shifts left (orange), Base → shifts right (yellow).

Oxidising reactions (redox titration):
2Cr₂O₇²⁻ + 3H₂C₂O₄ + 8H⁺ → 4Cr³⁺ (green) + 6CO₂ + 7H₂O
Cr₂O₇²⁻ + 6Fe²⁺ + 14H⁺ → 2Cr³⁺ + 6Fe³⁺ + 7H₂O (orange to green)

dichromate = orange (Cr⁶⁺), reduced to green Cr³⁺. Used as self‑indicator.
💜 7. manganese & potassium permanganate

Manganese: greyish‑white, hard, brittle. Oxidation states: +2 (MnCl₂), +4 (MnO₂), +7 (KMnO₄).

Reactions:
3Mn(s) + 2O₂(g) → Mn₃O₄(s)
Mn(s) + Cl₂(g) → MnCl₂(s)
Mn(s) + H₂SO₄(dil) → MnSO₄(aq) + H₂(g)

Potassium permanganate (KMnO₄): deep purple, strong oxidising agent. In acidic medium:
MnO₄⁻ + 8H⁺ + 5e⁻ → Mn²⁺ + 4H₂O
In neutral/basic medium:
MnO₄⁻ + 2H₂O + 3e⁻ → MnO₂ + 4OH⁻

Titration reactions:
2MnO₄⁻ + 5C₂O₄²⁻ + 16H⁺ → 2Mn²⁺ + 10CO₂ + 8H₂O
MnO₄⁻ + 5Fe²⁺ + 8H⁺ → Mn²⁺ + 5Fe³⁺ + 4H₂O

Why K₂Cr₂O₇ and KMnO₄ used in redox titration? Intense colour change, strong oxidising power, act as self‑indicators (KMnO₄: purple to colourless Mn²⁺; K₂Cr₂O₇: orange to green Cr³⁺).
Permanganate: purple → colourless (acid) ; purple → brown MnO₂ (basic).
⚙️ 8. iron & steel types (applications)

Iron (Fe): 4th most abundant element, essential for haemoglobin. Reacts with air (rust): 4Fe + 3O₂ → 2Fe₂O₃. With excess Cl₂: 2Fe + 3Cl₂ → 2FeCl₃.

Steel types & applications (table form):

🧱 Stainless steel contains chromium (>10.5%) for corrosion resistance.
🔌 9. copper & metallurgy (chalcopyrite)

Copper (Cu): reddish‑brown, malleable, ductile, second highest electrical conductivity (after Ag).

Reactions with acids:
Cu + 2H₂SO₄(conc.) → CuSO₄ + SO₂ + 2H₂O
Cu + 4HNO₃(conc.) → Cu(NO₃)₂ + 2NO₂ + 2H₂O

Metallurgy of copper: Most abundant ore chalcopyrite (CuFeS₂). Steps:

  1. Concentration (froth flotation).
  2. Roasting (converts FeS to FeO, removes volatile impurities).
  3. Smelting in blast furnace → copper matte (Cu₂S + FeS).
  4. Bessemer converter → blister copper (~98% pure).
  5. Electrolytic refining: impure Cu anode, pure Cu cathode, CuSO₄/H₂SO₄ electrolyte → 99.99% pure copper.

Pakistani deposits: Saindak and Reko Diq (Balochistan) copper‑gold mines.

Chalcopyrite = CuFeS₂; blister copper further refined by electrolysis.
🧲 10. additional descriptive points

📋 ultra‑condensed key facts (all covered)

✅ 4 series: 3d(Sc–Zn),4d(Y–Cd),5d(La–Hg),6d(Ac–Cn) • ✅ Cr:[Ar]4s¹3d⁵, Cu:[Ar]4s¹3d¹⁰ • ✅ Binding energy ↑ across, ↓ down; Zn least • ✅ Var.O.S. +2 to +7 (Mn highest) • ✅ IUPAC: anionic ligands end in ‘o’, anionic complex metal‑ate • ✅ K₂Cr₂O₇ orange ↔ yellow pH sensitive • ✅ KMnO₄ purple, strong oxidant • ✅ Steel types: carbon, stainless, tool, alloy • ✅ Cu metallurgy: chalcopyrite → electrolytic refining 99.99% • ✅ Saindak & Reko Diq copper mines.

📝 20 MCQs · test your memory

Click option: correct turns green, wrong turns red (after submit).

📐 student guidelines (left aligned, no bullets in guidelines)

⚛️ outer transition elements · d-block extended · everExams study template · @everexams.com