Experiment 10.1: Flame Test to Identify Metal Ions

Apparatus:

- 1. Platinum or nichrome wire
- 2. Bunsen burner
- 3. Watch glass
- 4. Spatula
- 5. Glass rod
- 6. Concentrated HCl and HNO_3

Chemicals:

- Salts of sodium, calcium, strontium, barium, copper, and potassium

Procedure:

1. Clean the platinum wire by dipping it in concentrated HNO₃ and heating it in the Bunsen burner flame until it imparts no color.

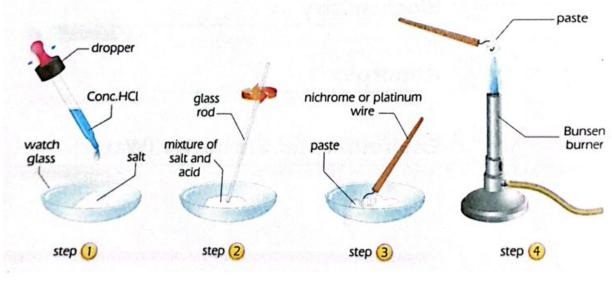
- 2. Mix a small amount of the salt with concentrated HCl on a watch glass to form a paste.
- 3. Dip the cleaned wire into the paste and hold it in the Bunsen burner flame.
- 4. Observe the color of the flame produced by the metal ion.
- 5. Repeat the process for each salt and record the flame colors.

Chemical Equation:

- Metal chloride + Heat \rightarrow Metal ion + Flame color

Observations:

| S. No. | Flame Color | Metal Ion |


|-----|

| 1. | Bluish green | Cu^{2+} |

Result:

Different metal ions produce different flame colors, which helps in identifying the metal ions present in the salts.

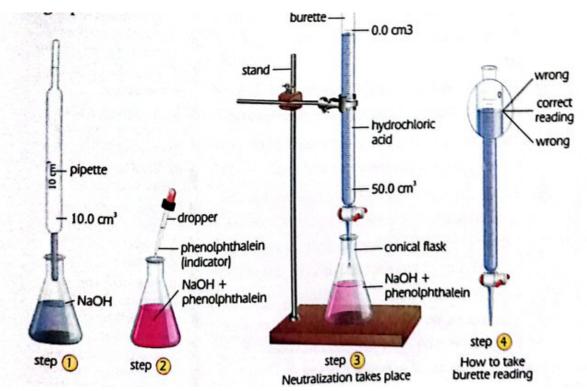
Experiment 10.2: Standardization of NaOH Solution

Apparatus:

- 1. Burette
- 2. Pipette
- 3. Conical flask
- 4. Funnel
- 5. Beaker

6. Iron stand

Chemicals:


- 0.1 M HCl (standard solution)
- NaOH solution
- Phenolphthalein indicator

Procedure:

- 1. Rinse the burette with HCl and fill it with 0.1 M HCl.
- 2. Pipette 10 cm³ of NaOH solution into a conical flask and add 2 drops of phenolphthalein.
- 3. Titrate the NaOH solution with HCl until the pink color disappears.
- 4. Record the volume of HCl used.
- 5. Repeat the titration to get consistent results.

Chemical Equation:

 $NaOH + HCI \rightarrow NaCI + H_2O$

S. No.	Initial Reading (cm ³) Final Reading	g (cm³) Volume o	f HCl used (cm ³)
--------	-------------------	-----------------------------------	--------------------	-------------------------------

1.	0.00	10.0	10.0	Ι
2.	10.0	20.0	10.0	I
3.	20.0	30.0	10.0	

Observation:

End point Light pink colour disappears

Calculations:

Acid = Base

$$\frac{M_1 \times V_1}{n_1} = \frac{M_2 \times V_2}{n_2}$$

$$\therefore \frac{0.1 \times 10}{1} = \frac{M_2 \times 10}{1}$$

$$\therefore M_2 = \frac{0.1 \times 10 \times 1}{1 \times 10}$$

$$\therefore M_2 = 0.1 M$$
Molarity of NaOH = 0.1 M

Result:

The molarity of the NaOH solution is 0.1 M.

Experiment 10.3: Standardization of HCl Solution

Apparatus:

1. Burette

2. Pipette

- 3. Conical flask
- 4. Funnel
- 5. Beaker
- 6. Iron stand

Chemicals:

- 0.1 M NaOH (standard solution)
- HCl solution
- Phenolphthalein indicator

Procedure:

- 1. Rinse the burette with HCl and fill it with HCl solution.
- 2. Pipette 10 cm³ of 0.1 M NaOH into a conical flask and add 2 drops of phenolphthalein.
- 3. Titrate the NaOH solution with HCl until the pink color disappears.
- 4. Record the volume of HCl used.
- 5. Repeat the titration to get consistent results.

Chemical Equation:

 $\rm NaOH + HCl \rightarrow NaCl + H_2O$

Observations:

| S. No. | Initial Reading (cm³) | Final Reading (cm³) | Volume of HCl used (cm³) |

1.	0.00	10.0	10.0	
2.	10.0	20.0	10.0	I
3.	20.0	30.0	10.0	

Calculations:

Acid			Base
$\frac{M_1 \times n_1}{n_1}$	V ₁	=	$\frac{M_2 \times V_2}{n_2}$
<u>M1></u>	10	=	$\frac{0.1 \times 10}{1}$
$M_1 \times 10$	×1	=	0.1 × 10 × 1
	Mı	=	$\frac{0.1 \times 10}{10}$
	M ₁	=	0.1 m

•

Result:

The molarity of the HCl solution is 0.1 M.

Experiment 10.4: Determine Molarity of Na₂CO₃ Solution

Apparatus:

- 1. Burette
- 2. Pipette
- 3. Conical flask
- 4. Funnel
- 5. Beaker
- 6. Iron stand

Chemicals:

- 0.1 M HCl (standard solution)
- Na₂CO₃ solution

- Methyl orange indicator

Procedure:

- 1. Rinse the burette with HCl and fill it with 0.1 M HCl.
- 2. Pipette 10 cm³ of Na₂CO₃ solution into a conical flask and add 2 drops of methyl orange.
- 3. Titrate the Na_2CO_3 solution with HCl until the color changes from yellow to red.
- 4. Record the volume of HCl used.
- 5. Repeat the titration to get consistent results.

Chemical Equation:

 $Na_2CO_3 + 2HCI \rightarrow 2NaCI + H_2O + CO_2$

Observations:

S. No. Initial Reading (cm ³)	Final Reading (cm ³)	Volume of HCl used (cm ³)
---	----------------------------------	---------------------------------------

1.	0.00	10.0	10.0	
2.	10.0	20.0	10.0	I
3.	20.0	30.0	10.0	

Calculations:

Acid = Base

$$\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$$

$$\frac{0.1x10}{2} = \frac{M_2x10}{1}$$

$$0.05M = M_2$$

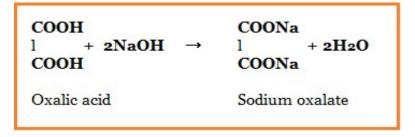
Result:

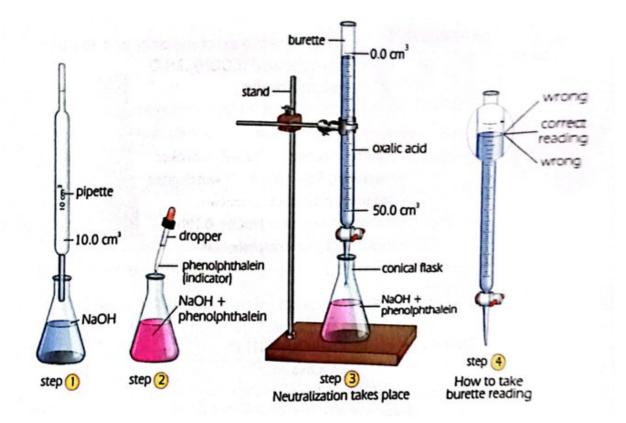
The molarity of the Na_2CO_3 solution is 0.05 M.

Experiment 10.5: Determine Molarity of Oxalic Acid Solution

Apparatus:

- 1. Burette
- 2. Pipette
- 3. Conical flask
- 4. Funnel
- 5. Beaker
- 6. Iron stand


Chemicals:


- 0.1 M NaOH (standard solution)
- Oxalic acid solution
- Phenolphthalein indicator

Procedure:

- 1. Rinse the burette with oxalic acid and fill it with oxalic acid solution.
- 2. Pipette 10 cm³ of 0.1 M NaOH into a conical flask and add 2 drops of phenolphthalein.
- 3. Titrate the NaOH solution with oxalic acid until the pink color disappears.
- 4. Record the volume of oxalic acid used.
- 5. Repeat the titration to get consistent results.

Chemical Equation:

S. No. Initial Reading (cm ³) F	Final Reading (cm ³)	Volume of Oxalic Acid used (cm ³)
---	----------------------------------	---

1.	0.00	10.0	10.0	Ι
2.	10.0	20.0	10.0	Ι
3.	20.0	30.0	10.0	Ι

Calculations:

Acid = Base

$$\frac{M_1V_1}{n_1} = \frac{M_2V_2}{n_2}$$

$$\frac{M_1x10}{1} = \frac{0.1x10}{2}$$

$$M_1 = 0.05M$$

Result:

The molarity of the oxalic acid solution is 0.05 M.

Experiment 10.6: Demonstrate Natural Substances as Weak Acids

Apparatus:

- 1. Test tubes
- 2. pH paper
- 3. Knife

Chemicals:

- Lemon juice
- Orange juice
- Apple juice
- Vinegar

Procedure:

- 1. Take small amounts of each juice in separate test tubes.
- 2. Dip pH paper into each solution.
- 3. Compare the color of the pH paper with the pH chart.
- 4. Record the pH of each solution.

Observations:

- | Substance | pH Value |
- | Lemon juice | 2 |
- | Orange juice | 4 |
- Apple juice | 5 |

|Vinegar |4 |

Result:

Natural substances like lemon juice, orange juice, apple juice, and vinegar are weak acids as they have pH values less than 7.

Experiment 10.7: Classify Substances as Acidic, Basic, or Neutral

Apparatus:

1. Test tubes

2. Red and blue litmus paper

Chemicals:

- Hydrochloric acid
- Sodium hydroxide
- Ethanol
- Distilled water

Procedure:

- 1. Take small amounts of each substance in separate test tubes.
- 2. Dip red and blue litmus paper into each solution.
- 3. Observe the color change in the litmus paper.
- 4. Record whether the substance is acidic, basic, or neutral.

Observations:

| Substance | Action on Litmus Paper | Inference |

Hydrochloric acic	l Turns blue litmus re	d Acidic	
Sodium hydroxid	e Turns red litmus b	lue Basic	I
Ethanol	No change	Neutral	I
Distilled water	No change	Neutral	Ι

Result:

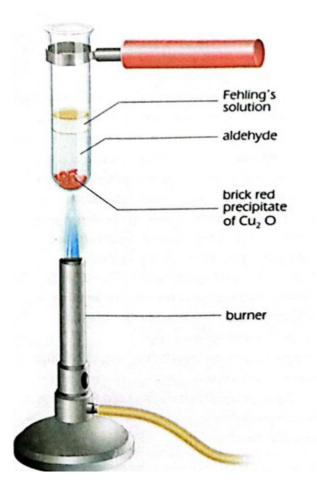
- Hydrochloric acid is acidic.
- Sodium hydroxide is basic.
- Ethanol and distilled water are neutral.

Experiment 11.1: Identify Aldehydes using Fehling's and Tollen's Test

Apparatus:

1. Test tubes

2. Water bath


3. Dropper

Chemicals:

- Fehling's solution A and B
- Tollen's reagent
- Glucose solution

Procedure (Fehling's Test):

- 1. Mix Fehling's solution A and B in a test tube.
- 2. Add glucose solution and heat the mixture.
- 3. Observe the formation of a brick red precipitate.

Procedure (Tollen's Test):

- 1. Mix glucose solution with Tollen's reagent.
- 2. Heat the mixture in a water bath.
- 3. Observe the formation of a silver mirror.

Chemical Equation:

- Fehling's Test:

.

$$\begin{array}{c} O \\ \parallel \\ R - C - H + 2Cu(OH)_2 + NaOH \xrightarrow{\text{warm}} R \longrightarrow C - ONa + Cu_2O + 3H_2O \\ \text{An aldehyde} \end{array}$$

```
- Tollen's Test:
```

$$O \qquad O \qquad U \\ CH_3 - C - H + [Ag(NH_3)_2]^+ + 2OH^- \xrightarrow{Heat} CH_3 - C - O^-N^+H_4 + 2NH_3 + 2Ag + H_2O \\ Acetaldehyde$$

- Fehling's Test: Brick red precipitate formed.

- Tollen's Test: Silver mirror formed.

Result:

The given compound is an aldehyde as it gives positive Fehling's and Tollen's tests.

Experiment 11.2: Identify Ketones using 2,4-Dinitrophenylhydrazine Test

Apparatus:

1. Test tubes

2. Water bath

3. Dropper

Chemicals:

- 2,4-Dinitrophenylhydrazine (2,4-DNPH)

- Fructose solution

Procedure:

- 1. Take small quantity of 2,4-DNPH in 5 cm3 ethanol.
- 2. Add into 1-2 drops of conc. H2SO4
- 3. Shake to dissolve fructose crystals in 95% ethanol.
- 4. Mix the above two solution and stand.
- 5. If precipitate does not appear, dilute it with 1M H2SO4.

- Orange precipitate formed.

Result:

The given compound is a ketone as it gives a positive 2,4-DNPH test.

Experiment 11.3: Identify Carboxylic Acids using Sodium Carbonate Test

Apparatus:

1. Test tubes

2. Delivery tube

3. Cork

Chemicals:

- Acetic acid

- Sodium carbonate

- Lime water

Procedure:

- 1. Add sodium carbonate to acetic acid in a test tube.
- 2. Pass the evolved gas through lime water.
- 3. Observe the lime water turning milky.

Chemical reaction

 $CH_{3}COOH_{(aq)} + Na_{2}CO_{3(aq)} \longrightarrow CH_{3}COONa_{(aq)} + H_{2}O_{(f)} + CO_{2(g)}$

- Effervescence observed.
- Lime water turns milky.

Result:

The given compound is a carboxylic acid as it produces CO₂ gas with sodium carbonate.

Experiment 11.4: Identify Phenol using Ferric Chloride Test

Apparatus:

1. Test tubes

2. Dropper

Chemicals:

- Phenol solution

- Ferric chloride solution

Procedure:

- 1) Take dilute solution of phenol in test tube.
- 2) Add a few drops of ferric chloride solution to phenol solution.
- 3) Observe the color change.

Observations:

- Violet color produced.

Result:

The given compound is phenol as it gives a violet color with ferric chloride.

Simplified Experiment: Identifying Saturated and Unsaturated Compounds

Objective:

Use potassium permanganate (KMnO₄) and bromine water to test if cinnamic acid and tartaric acid are saturated or unsaturated.

-	-	-	

Materials Needed:

- Test tubes
- Dropper
- Glass rod
- Chemicals:
- Cinnamic acid
- Tartaric acid
- Acidified KMnO₄ solution
- Bromine water
- Dilute H_2SO_4

Procedure:

Part 1: KMnO₄ Test

- 1. Prepare acidified KMnO₄:
- Dissolve a few $KMnO_4$ crystals in water. Add a few drops of dilute H_2SO_4 .

2. Test cinnamic acid:

- Mix cinnamic acid with water (it won't fully dissolve).
- Add acidified KMnO₄.
- Observation: Purple color disappears.
- 3. Test tartaric acid:
 - Dissolve tartaric acid in water.
 - Add acidified KMnO₄.
 - Observation: Purple color remains.

Part 2: Bromine Water Test

- 1. Test cinnamic acid:
- Add bromine water to cinnamic acid suspension.
- Observation: Orange color disappears.
- 2. Test tartaric acid:
 - Add bromine water to tartaric acid solution.
 - Observation: Orange color stays.
- ---

Results:

Compound KMnO₄ Test (Color Ch	ange) Bromine Water Test (Co	olor Change) Infe	rence
Cinnamic acid Disappears (Positive)	Disappears (Positive)	Unsaturated	I
Tartaric acid No change (Negative)	No change (Negative)	Saturated	I

T

Conclusion:

- Cinnamic acid is unsaturated (reacts with KMnO₄ and bromine water).

- Tartaric acid is saturated (no reaction).

Unsaturated compounds (like cinnamic acid) decolorize KMnO₄ and bromine water due to double bonds. Saturated compounds (like tartaric acid) do not react.

•••••

Experiment 13.1: Decomposition of Sugar

Apparatus:

1. Test tube

2. Bunsen burner

3. Cobalt chloride paper

Chemicals:

- Sugar

- Concentrated sulphuric acid

Procedure:

- 1) Take dry crystals of sugar in a test tube.
- 2) Heat sugar in a test tube.
- 3) Bring cobalt chloride paper near the mouth of the test tube.
- 4) Observe the color change.

Chemical Equation:

$$C_{12}H_{22}O_{11} \xrightarrow{heat} 12C + 11H_2O$$

Observations:

On slight heating, sugar turns brown

On strong heating, Sugar turns black.

Cobalt chloride paper near the mouth of test tube turns blue.

Result:

Sugar decomposes into carbon and water on heating.

Experiment 15.1: Softening of Hard Water

Apparatus:

1. Test tubes

2. Beaker

3. Distilled water

Chemicals:

- Sodium bicarbonate

- Calcium chloride

- Soap solution

Procedure:

- 1. Take distilled water in three test tubes labelled as A, B and C.
- 2. Add Na2SO4 in test tube A.
- 3. Add few drops of soap solution in test tube A and observe
- 4. Add NaHCO3 and CaCl2 in test tube B and shake to dissolve in test tube B and
- 5. Add soap solution to hard water and observe the formation of scum.
- 6. Boil the hard water and add soap solution again.
- 7. Observe the formation of lather.
- 8. In test tube C, add CaCl2 and add few drops of solution.

Chemical Equation:

 $CaCl2 + Na2CO3 \rightarrow CaCl2 + 2NaCl$

 $MgSO4 + Na2CO3 \rightarrow MgCO3 + Na2SO4$

S. No.	Experiments	Observations
1.	Add a few drops of soap solution in test tube A and shake.	Lather is formed
2.	Add a few drops of soap solution in a portion of solution in test tube B and shake. Notice to the band shake to the solution in test tube B and shake tube	Scum is produced
3.	Boil the solution present in test tube B. Add a few drops of soap solution and shake.	Lather is formed
4.	Take a portion of the solution in test tube C. Add a few drops of soap solution and shake.	Scum is produced
5.	Boil 2nd portion of solution in test tube C. Add a few drops of soap solution and shake.	Scum is produced
6.	Add Na ₂ CO ₃ in the remaining solution in test tube C. Shake and filter. Then add a few drops of soap solution in the filterate and shake.	Lather is produced

- Scum forms in hard water.
- Lather forms after boiling or adding sodium carbonate.

Result:

Hard water can be softened by boiling or adding sodium carbonate.

Result	1. Test tube contains soft water. (Experiment 1 above).
	2. Experiment 2: Water in test tube B is temporary hard water.
	 Experiment 3: On boiling temporary hardness of water was removed in test tube B.
	4. Experiment 4: Test tube C contains permanent hard water.
	5. Experiment 5: Permanent hardness of water could not be removed by boiling test tube C.
	6. Experiment 6: Permanent hardness of water was removed by adding Na ₂ CO ₃ in test tube C.